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Abstract

This paper extends previous results for the classical product partition model applied to the identi7cation of
multiple change points in the means and variances of time series. Prior distributions for these two parameters
and for the probability p that a change takes place at a particular period of time are considered and a new
scheme based on Gibbs sampling to estimate the posterior relevances of the model is proposed. The resulting
algorithm is applied to the analysis of two Brazilian stock market data. The computational experiments seem
to indicate that the algorithm runs fast in common PC-like machines and it may be a useful tool for analyzing
change-point problems.

Scope and purpose

The problem of change-point identi7cation is encountered in many subject areas, including disease mapping,
medical diagnosis, industrial control, and 7nance. A Bayesian way to tackle the problem is through the
well-known product partition model (PPM) introduced by Hartigan in the early 1990s. Nowadays, the PPM is
still attracting researchers’ attention because of its =exibility and the spreading use of the powerful personal
computers that make it possible to deal with its inherent computational complexity. In this paper, the PPM is
tailored to the identi7cation of change points both in the means and variances of time series, assuming that,
given these parameters, the data are normally distributed. We extend some previous works by considering a
non-degenerate prior distribution to the probability p of having a change point at a particular period of time.
An original Gibbs sampling scheme is also developed to compute the product estimates and, consequently,
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to attack the diKcult resulting model which is applied to the identi7cation of change points in the expected
returns (means) and volatilities (variances) of two important stock market data in Brazil. The computational
results seem to indicate that method is eLective and eKcient, making it possible useful inferences. In addition,
the method is simple and easy to implement. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The identi7cation of change points is important in many data analysis problems, such as disease
mapping, medical diagnosis and industrial control. This problem also arises in stock market analysis.
Indeed, Fig. 1 shows the Indice Geral da Bolsa de São Paulo (IBOVESPA) and the Indice da
Bolsa de Valores de Minas Gerais; Esp�rito Santo e Bras�lia (IBOVMESB) series, two of the
most important Brazilian indexes. Both are expressed in terms of the returns calculated on closing
prices recorded monthly. Inferences on the instants when changes occurred in the expected returns
(means) and in the volatilities (variances) of such series, for example, allows the identi7cation of
events that could have produced the changes, helping decision makers in the future under similar
situations.
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Fig. 1. IBOVESPA and IBOVMESB return series.
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Bayesian approaches for the change-point problem have been presented by several authors. For
example, Menzefricke [2] considers the problem of making inferences about a change point in the
precision of normal data with unknown mean. A single change point in the functional form of the
distribution is explored by Hsu [3], who considers the class of the exponential-power distributions
(see Box and Tiao [4]) for treating the problem. Hsu [3] and Menzefricke [2] apply their method-
ologies to stock market prices (see also Smith [5]). Stephens [6] discusses the discrete multiple
change-point problem and the continuous single-change-point problems, which is illustrated by con-
sidering some kidney transplant data. Stephens [6] also focuses on the computational complexity
involved in the change-point identi7cation.

Later, Hartigan [1] proposes the product partition model (PPM), which generalizes most of the
situations described above. The PPM allows the identi7cation of multiple change points in the
parameters as well as in the distribution function itself. Besides, the PPM assumes that the number
of change points and also the instants when the changes occur are random variables, which makes the
PPM more interesting and =exible than those models that consider the number of changes as 7xed
(threshold models and the method based on maximum likelihood estimation considered by Hawkins
[7], for example). The PPM is considered by Barry and Hartigan [8] to identify multiple change
points in normal means with common variance. Recently, Crowley [9] provides a new implementation
of the Gibbs sampling scheme and also consider an empirical-Bayes approach in order to solve
the problem of estimating normal means by using the PPM. Quintana and Iglesias [10] present a
decision-theoretical approach formulation to the PPM and connect the PPM to the Dirichlet process.
The PPM is also used by Loschi et al. [11] to identify multiple change points both in the means and
variances of normal data. Loschi et al. [11] consider the recursive algorithm proposed by Yao [12]
to obtain the posterior relevances (and, consequently, the product estimates of the normal means and
variances) and implement a Gibbs sampling scheme to estimate the posterior distributions of the
number of change points and the instants when changes occur. Loschi et al. [11] also consider the
prior cohesion de7ned by Yao [12], which depends on the probability p that a change takes place
at any time, assuming a degenerate prior distribution for that probability.

This paper extends the Loschi et al.’s results by assuming rather a non-degenerate prior distribution
to the parameter p involved in Yao’s cohesions and by providing an original procedure to evaluate
the posterior relevances based on a Gibbs sampling scheme. The algorithm proposed is applied
to identify multiple changes in the mean returns and in the volatilities of the IBOVESPA and
IBOVMESB series to illustrate the use of the method, and to point out some events that could have
produced the changes.

The paper is organized as follows. Section 2 brie=y reviews the PPM and presents inferential
solutions to identify change points in random variables normally distributed, given the means and
variances. Section 2 also presents the exact posterior relevances, the posterior distributions of the
random partition generated by the change points, and the posterior distribution of the number of
change points in the partition. In Section 3, a Gibbs sampling scheme is proposed to compute the
posterior relevances, the posterior distributions of the number of blocks in the partition generated by
the change points, and the posterior distribution of this random partition. In Section 4, the algorithm
is applied to the identi7cation of change points in the mean returns and in the volatilities of the
IBOVESPA and IBOVMESB. Section 5 closes the paper with 7nal remarks and future topics for
investigation.
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2. Statistical models

In this section, the PPM and some preliminary results are presented, as shown in Barry and
Hartigan [13,8]. Details are given on how the PPM may be tailored to identify multiple change
points in the means and variances of normal data, as presented by Loschi et al. [11]. Then, original
results are presented on how to compute the posterior relevances of the model and the exact posterior
distributions of the blocks and the number of change points, considering the beta prior distribution
for the parameter p (probability of having a change) involved in Yao’s cohesions.

2.1. The PPM

Let X1; : : : ; Xn be a observed time series. Consider a random partition � of the set I={1; : : : ; n}∪{0}
and a random variable B that represents the number of blocks in �. Consider that each partition
� = {i0; i1; : : : ; ib}, 0 = i0 ¡ i1 ¡ · · ·¡ ib = n, divides the sequence X1; : : : ; Xn into B = b, b∈ I ,
contiguous subsequences, which will be denoted by X[ir−1ij] = (Xir−1+1; : : : ; Xir)

′, r =1; : : : ; b. Let c[ij]
be the prior cohesion associated to the block [ij]={i+1; : : : ; j}, i; j∈ I∪{0}; j ¿ i, which represents
the degree of similarity among the observations in X[ij].

Hence, it is said that the random quantity (X1; : : : ; Xn; �) follows a PPM, denoted by (X1; : : : ; Xn; �)
∼ PPM , if:
(i) the prior distribution of � is the following product distribution:

P(� = {i0; : : : ; ib}) =
∏b

j=1 c[ij−1ij]∑
C

∏b
j=1 c[ij−1ij]

; (1)

where C is the set of all possible partitions of the set I into b contiguous blocks with end points
i1; : : : ; ib; satisfying the condition 0 = i0 ¡ i1 ¡ · · ·¡ ib = n; b∈ I ;

(ii) conditionally on � = {i0; : : : ; ib}, the sequence X1; : : : ; Xn has the joint density given by

f(X1; : : : ; Xn|� = {i0; : : : ; ib}) =
b∏

j=1

f[ij−1ij](X[ij−1ij]); (2)

where f[ij](X[ij]) is the density of the random vector, called data factor, X[ij] = (Xi+1; : : : ; Xj)′.
Notice that the PPM described above describes the uncertainty about the random object (X1; : : : ; Xn;

�), if the prior opinion about this object discloses the existence of blocks of observations produced
by some judgment of similarities (in some sense) among these observations, as well as independence
among the diLerent blocks.

Also note that the number of blocks B in � has a prior distribution given by

P(B = b)˙
∑
C1

b∏
j=1

c[ij−1ij]; b∈ I; (3)

where C1 is the set of all partitions of I ∪ {0} in b (7x) contiguous blocks.
As shown in Barry and Hartigan [13], the posterior distributions of � and B have the same form of

the prior distribution, where the posterior cohesion for the block [ij] is given by c∗[ij] =c[ij]f[ij](X[ij]).
That is, the PPM induces some kind of conjugacy.
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Fig. 2. The PPM.

In the parametric approach to the PPM, a sequence of unknown parameters �1; : : : ; �n, such that,
conditionally in �1; : : : ; �n, the sequence of random variables X1; : : : ; Xn has conditional marginal
densities f1(X1|�1); : : : ; fn(Xn|�n), respectively, is considered. In this case, it is considered that two
observations Xi and Xj, such that i �= j, are in the same block, if it is believed that they are identically
distributed. Thus, in this approach to the PPM, the predictive distribution f[ij](X[ij]), which appeared
in (2), can be obtained as follows:

f[ij](X[ij]) =
∫

�[ij]

f[ij](X[ij]|�)�[ij](�) d�; (4)

where �[ij] is the parameter space corresponding to the common parameter, say, �[ij]=�i+1= · · ·=�j,
which indexes the conditional density of X[ij] = (Xi+1; : : : ; Xj)′.

The prior distribution of �1; : : : ; �n is constructed as follows. Given a partition � = {i0; : : : ; ib};
b∈ I; we have that �i = �[ir−1ir ] for every ir−1 ¡ i6 ir ; r = 1; : : : ; b, and that �[i0i1]; : : : ; �[ib−1ib] are
independent, with �[ij] having (block) prior density �[ij](�), �∈�[ij].
Hence, the goal is to obtain the marginal posterior distributions of the parameters �; B, and �k ,

k = 1; : : : ; n. Barry and Hartigan [13] have shown that the posterior distributions of �k is given by

�(�k |X1; : : : ; Xn) =
k−1∑
i=0

n∑
j=k

r∗[ij]�[ij](�k |X[ij]) (5)

for k = 1; : : : ; n, and the posterior expectation of �k is given by

E(�k |X1; : : : ; Xn) =
k−1∑
i=0

n∑
j=k

r∗[ij]E(�k |X[ij]) (6)

for k = 1; : : : ; n, where r∗[ij] denotes the posterior relevance for the block [ij], that is

r∗[ij] = P([ij]∈ �|X1; : : : ; Xn):

In pseudo-language, Fig. 2 shows the PPM to solve the change-point identi7cation problem.
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2.2. The normal PPM, the mean and variance case

To specify the PPM for normal data, it is assumed that there is a sequence of unknown parameters
�1 = (�1; �2

1); : : : ; �n = (�n; �2
n), such that Xk |�k; �2

k ∼ N (�k; �2
k); k = 1; : : : ; n, and that the parameters

are independent. It is also assumed that each common parameter �[ij] = (�[ij]; �2
[ij]); related to the

block [ij], has the conjugate normal-inverted-gamma prior distribution denoted by

(�[ij]; �2
[ij]) ∼ NIG(m[ij]; v[ij]; a[ij]=2; d[ij]=2);

that is

�[ij]|�2
[ij] ∼ N (m[ij]; v[ij]�2

[ij]) and �2
[ij] ∼ IG(a[ij]=2; d[ij]=2); (7)

where IG(a; d) denotes the inverted-gamma distribution with parameters a and d, m[ij] ∈R, and a[ij],
d[ij] and v[ij] are positive values. Hence, the conditional distribution of �[ij] = (�[ij]; �2

[ij]), given the
observations in X[ij], is the normal-inverted-gamma distribution given by

(�[ij]; �2
[ij])|X[ij] ∼ NIG(m∗

[ij]; v
∗
[ij]; a

∗
[ij]=2; d

∗
[ij]=2); (8)

where

m∗
[ij] =

(j − i)v[ij] RX [ij]

(j − i)v[ij] + 1
+

m[ij]

(j − i)v[ij] + 1
;

v∗[ij] =
v[ij]

(j − i)v[ij] + 1
;

d∗
[ij] = d[ij] + j − i;

a∗[ij] = a[ij] + q[ij](X[ij]) (9)

with

q[ij](X[ij]) =
j∑

r=i+1

(Xr − RX [ij])2 +
(j − i)( RX [ij] − m[ij])2

(j − i)v[ij] + 1

and

RX [ij] =
1

j − i

j∑
r=i+1

Xr:

Consequently, it follows from Eq. (8) that, given X[ij], the conditional marginal densities of �[ij] and
�2
[ij] are, respectively

�[ij]|X[ij] ∼ t(m∗
[ij]; v[ij]; a

∗
[ij]; d

∗
[ij]) and �2

[ij]|X[ij] ∼ IG(a∗[ij]=2; d
∗
[ij]=2) (10)

for which it is observed that (the interested reader may 7nd details in O’Hagan [14])

E(�[ij]|X[ij]) = m∗
[ij]; if d∗

[ij] ¿ 1;
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Fig. 3. The normal PPM, mean and variance case.

and

E(�2
[ij]|X[ij]) =

a∗[ij]
d∗
[ij] − 2

; if d∗
[ij] ¿ 2: (11)

From Eqs. (6) and (11), it follows that the posterior estimates for the parameters �k and �2
k are

given by

E(�k |X1; : : : ; Xn) =
k−1∑
i=0

n∑
j=k

r∗[ij]m
∗
[ij]; if d∗

[ij] ¿ 1;

and

E(�2
k |X1; : : : ; Xn) =

k−1∑
i=0

n∑
j=k

r∗[ij]
a∗[ij]

d∗
[ij] − 2

; if d∗
[ij] ¿ 2; (12)

respectively, with k = 1; : : : ; n, where m∗
[ij], a∗[ij] and d∗

[ij] are de7ned as in Eq. (9).
Fig. 3 shows the normal PPM, for the mean and variance case.

2.3. The exact posterior distributions of � and B and the posterior relevances r∗[ij]

As one may already have noticed, the algorithm presented in Fig. 3 gives no details at all on how
to compute the posterior relevance r∗[ij]. Assuming only the existence of contiguous blocks, the prior
cohesions, as de7ned by Yao [12], can be interpreted as the transition probabilities in the Markov
chain de7ned by the endpoints of the blocks in the partition �. Let 06p6 1 be the probability
that a change occurs at any instant in the sequence. Thus, the prior cohesion for block [ij]; c[ij],
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corresponds to the probability that a new change takes place after j− i instants, given that a change
has taken place at the instant i, that is

c[ij] =

{
p(1− p) j−i−1 if j ¡ n;

(1− p) j−i−1 if j = n
(13)

for all i; j∈ I , such that i ¡ j.
Consequently, from Eq. (1), one can obtain that the prior distribution of � takes the form

P(� = {i0; i1; : : : ; ib}) = pb−1(1− p)n−b; b∈ I

and from Eq. (2), it follows that the prior distribution of the random variable B is given by

P(B = b) = Cn−1
b−1p

b−1(1− p)n−b; ∀b∈ I;

where Cn−1
b−1 is the number of distinct partitions of I into b contiguous blocks.

Assume that p has the $ prior distribution with % ¿ 0 and $ ¿ 0 parameters, denoted by p ∼
B(%; $). Let C be the set of all partitions of the set I into b contiguous blocks with endpoints i0; : : : ; ib,
satisfying the condition 0 = i0; : : : ; ib = n; b∈ I and consider C1 ⊂ C the subset of all partitions that
contain the block [ij] = {i + 1; : : : ; j}. Thus, since % ¿ 1 and $ ¿ 1, the posterior distribution of the
random partition � is given by

P(� = {i0; i1; : : : ; ib}|X1; : : : ; Xn) =
{∏b

j=1 f[ij−1ij](X[ij−1ij])}∑
C{

∏b
j=1 f[ij−1ij](X[ij−1ij])}

&(b + % − 1)&(n + $ − b)
&(b + % − 1)&(n + $ − b)

:

(14)

The posterior probability of the event B = b; b∈ I; is given by multiplying the posterior probability
in Eq. (14) by Cn−1

b−1 . Notice that the posterior distributions of � and B do not have the product
distribution presented in Section 2.1 (as obtained by Loschi et al. [11]).

The exact posterior relevance r∗[ij] to the block [ij], for i ¡ j, can be calculated as follows:

r∗[ij] =

∑
C1

∏k
j=1; ik=i f[ij−1ij](X[ij−1ij])f[ij](X[ij])∑
C

∏b
j=1 f[i−j−1ij](X[ij−1ij])

b∏
j=k+2; ik+1=j

f[ij−1ij](X[ij−1ij])

×&(b + % − 1)&(n + $ − b)
&(b + % − 1)&(n + $ − b)

: (15)

Denote by 1n the n-dimensional vector of ones and let In be the (n×n)-dimensional identity matrix.
If the PPM presented in Section 2.2 is assumed which consider conditionally normally distributed
data, it follows that each block of observations X[ij] has the (j− i)-dimensional Student-t distribution
denoted by X[ij] ∼ tj−i(m[ij];V[ij]; a[ij]; d[ij]) with density function given by

f[ij](X[ij]) =
&[(d[ij] + j − i)=2]

&[d[ij]=2]�k=2 ad[ij]=2
[ij] |V[ij]|−1=2

×{a[ij] + (X[ij] −m[ij])′V−1
[ij](X[ij] −m[ij])}−(d[ij]+j−i)=2; (16)



R.H. Loschi et al. / Computers & Operations Research 30 (2003) 463–482 471

where m[ij] = m[ij]1j−i and V[ij] = Ij−i + v[ij]1j−i1′j−i (see more about Student-t distribution in
Arellano-Valle and Bolfarine [15]).

Notice that in spite of the advantages introduced by the PPM in the identi7cation of multiple
change points (the number of change points is not previously 7xed), the exact calculation of the
posterior distributions of � and B, as well as the posterior relevances r∗[ij], demands such a high
computational eLort that it is unlikely that the PPM would be of practical interest in the analysis
of large data sets. In Section 3, the Loschi et al.’s computational approach to 7nd the posterior
distributions of � and B is shown and adapted to the beta prior situation and a new Gibbs sampling
scheme to overcome the diKculties of computing the posterior relevances is proposed.

3. Gibbs sampling scheme applied to the PPM

Gibbs Sampling is a Monte Carlo Markov Chain scheme proposed by Geman and Geman [16]
and adapted to Bayesian statistics by Gelfand and Smith [17]. In particular, Gibbs sampling provides
a posterior distribution generation scheme.

In order to estimate the posterior distributions of � and B and also the posterior relevances r∗[ij],
the transformation suggested by Barry and Hartigan [8] is used which assumes the auxiliary random
quantity Ui that re=ects whether or not a change point occurred at the time i, that is

Ui =

{
1 if �i = �i+1;

0 if �i �= �i+1;

for i = 1; : : : ; n − 1.
Notice that the random quantity � is immediately identi7ed once the vector U=(U1; U2; : : : ; Un−1)

is known. Consequently, the posterior probability of each particular partition � = {i0; i1; : : : ; ib}, into
b contiguous blocks, can be estimated from the number of U’s for which this particular value of �
is found. It is also possible to use the U’s to estimate the posterior distribution of B (or the posterior
distribution of the number of change points B− 1) simply by noticing that (see details in Loschi et
al. [11]):

B = 1 +
n−1∑
i=1

(1− Ui): (17)

The posterior relevances can be estimated by using the following procedure. Generate a sample of
U’s of size T . The estimate of the posterior relevance r∗[ij], for i; j=1; : : : ; n, such that i ¡ j, can be
computed as follows:

r̂∗[ij] =
M[ij]

T
; (18)

where M[ij] is the number of U’s for which the pattern Ui = 0, Ui+1 = · · · = Uj−1 = 1 and Uj = 0
is observed.

The vector Uk = (Uk
1 ; : : : ; U k

n−1) is generated at the kth step by using the Gibbs sampling as
follows. Starting with the initial values U0 = (U 0

1 ; : : : ; U 0
n−1), at the kth step, the rth element Uk

r is
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generated from the conditional distribution:

Ur|Uk
1 ; : : : ; U k

r−1; U
k−1
r+1 ; : : : ; U k−1

n−1 ; X1; : : : ; Xn; p

for r=1; : : : ; n−1. To generate the Uk’s, it is suKcient to consider the ratios given by the following
expressions (see Ross [18]):

Rr =
P(Ur = 1|Ak ;X1; : : : ; Xn; p)
P(Ur = 0|Ak

r ;X1; : : : ; Xn; p)

for r = 1; : : : ; n − 1, where Ak
r = {Uk

1 = u1; : : : ; U k
r−1 = ur−1; U k−1

r+1 = ur+1; : : : ; U k−1
n−1 = un−1}. Hence,

considering a $ prior distribution for p, it results that

Rr =
f[xy](X[xy])&(n + $ − b + 1)&(b + % − 2)

f[xr](X[xr])f[ry](X[ry])&(b + % − 1)&(n + $ − b)
; (19)

where

x =




max i
s:t: 0¡ i ¡ r; Uk

i = 0 if there is an Uk
i = 0;

for some i∈{1; : : : ; r − 1};
0 otherwise

Fig. 4. The proposed normal PPM for � and �2.
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and

y =




min i

s:t: r ¡ i ¡ n; Uk−1
i = 0 if there is an Uk−1

i = 0;

for some i∈{r + 1; : : : ; n − 1};
n otherwise:

Notice that, in the normal case, f[ij](X[ij]) is the Student-t distribution given in Eq. (16).
Consequently, the criterion for choosing the values (Uk

1 ; : : : ; U k
n−1) becomes

Uk
r =


 1 if Rr¿

1− u
u

;

0 otherwise
(20)

for r = 1; : : : ; n − 1, where u ∼ U (0; 1).
This completes the procedure proposed. The algorithm in pseudo-code is presented in Fig. 4.

4. Application to two important Brazilian indexes

In this section, the focus is on the identi7cation of multiple change points in the means (ex-
pected or mean returns) and variances (volatilities) of the IBOVESPA and IBOVMESB series. Both
time series, available from the authors, are expressed in terms of the returns calculated on closing
prices, recorded monthly. As usual in 7nance, a return series is de7ned by using the transformation
Rt = (Pt − Pt−1)=Pt−1; where Pt is the price in the month t. The IBOVESPA and IBOVMESB
return series are plotted in Fig. 1, from which it is noticeable that they present a similar behav-
ior, suggesting the existence of some changes in the means and variances of the returns in both
of them. The purpose is to verify whether or not, within the period considered, January, 1991
to August 1999, the two return series present change points in the expected returns and in the
volatilities.

4.1. The data analysis

The same prior cohesions and distributions are considered to describe the initial uncertain for
both series, although the IBOVMESB series seem to present lower variances, as one could see from
Fig. 1. These choice were done as reported by Loschi et al. [11], for the Chilean market. These
speci7cations can be supported by the fact that the Brazilian market is also an emerging market
and, like the Chilean market, more susceptible to the political scenario than developed markets
(see Mendes [19]). As for the Chilean market, we also assume that changes in the behavior of
the Brazilian stock return series are a consequence of the receipt of not previously anticipated
information (more about unpredictability can be found in Loschi [20]), so that past change points
are non-informative about future change points (see Mandelbrot [21]). Hence, the prior cohesions
presented in Eq. (13), which imply that the sequence of change points establishes a discrete renewal
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Fig. 5. IBOVESPA’s posterior estimates.

process, with occurrence times geometric and identically distributed, are also an adequate choice for
the Brazilian stock market.

The returns are supposed to be conditionally independent and distributed according to the normal
distribution N (�[ij]; �2

[ij]), and the natural conjugate prior distribution for the parameters �[ij] and �2
[ij]

is adopted, which in this case is the normal-inverted-gamma distribution.
In accordance to the Loschi et al. speci7cations for the Chilean stock market [11], the following

normal-inverted-gamma prior distribution is adopted to describe the uncertainty on the parameter
(�[ij]; �2

[ij]) for both indexes:

�[ij]|�2
[ij] ∼ N (0; �2

[ij])

and

�2
[ij] ∼ IG

(
0:01
2 ; 42

)
:
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Fig. 6. IBOVMESB’s posterior estimates.

Since a small number of changes is expected in both series, a beta distribution which concentrates
most of its mass on small values needs to be considered as prior distribution of p. The following
distribution is considered:

p ∼ B
(
3
2 ;

57
2

)
:

To estimate the posterior relevances r∗[ij] and the posterior distribution of B (or the number of change
points B− 1), 50,000 samples of 0–1 values with dimension 103, starting from a sequence of zeros
were generated. The initial 5000 iterations were discarded and a lag of 10 was selected to avoid
correlation. That means that a net sample size of 4500 was used. Discussion on the number of
iterations to be discarded, as well as the lag to be taken, can be easily found in the literature by the
interested reader (see Gamerman [22], for example).

The algorithm in Fig. 4 was coded in C++, with the settings mentioned above, and it is available
upon request. All tests were performed in PC-like machine, 166 MHz, 32 MB RAM, and using the
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Fig. 7. IBOVESPA’s joint behavior of expected returns and volatilities.

free C ++ compiler DJGPP (url: http://www.delorie.com/djgpp). All tests took less than 10 min of
CPU time.

Figs. 5 and 6 present the posterior estimates (solid lines) of the monthly mean returns and volatil-
ities for the IBOVESPA and IBOVMESB series, respectively. These estimates are contrasted with
the order 10 arithmetic moving averages (dotted lines) for means and variances. It is noticed that
the estimates obtained using the PPM are similar to the respective naUFve estimates.

Fig. 7 presents the posterior estimates of IBOVESPA’s expected returns (solid line) and volatilities
(dotted line). A similar comparison is presented in Fig. 8 for the IBOVMESB. Additionally, Figs.
7 and 8 show that more changes occurred in the expected returns than in the volatilities in both
series and that typically changes in the volatilities are followed by changes in the expected returns
for both indexes, which can also be seen in the dispersion diagrams in Figs. 9 and 10.

Figs. 11 and 12 show, respectively, the expected return posterior estimates and the volatility poste-
rior estimates for both series. It is noticed that typically, change points observed in the IBOVESPA
and IBOVMESB series occur at the same time and that the changes are in the same direction.
However, some diLerences in the behavior of these series are observed. The two changes observed
in IBOVMESB series, in August, 1991 and in October, 1991, do not occur in IBOVESPA series.
These change points could be related to the USIMINAS privatization, a important steel company
located in Minas Gerais state. The beginning of the crisis in the Fernando Collor’s government in
March, 1992, which culminate with his impeachment, in December of the same year, could be the
events that produced the change points in IBOVMESB series, around these two months. Against the
initial expectations, these important political events do not seem to produce changes in the behavior
of IBOVESPA series.

http://url: http://www.delorie.com/djgpp
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Fig. 8. IBOVMESB’s joint behavior of expected returns and volatilities.
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Fig. 10. IBOVMESB’s expected returns × volatilities dispersion diagram.
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A new currency, the Real, was introduced in July, 1994. The Real period has presented lower
expected returns and volatilities than the previous period. Mexico, and Asia’s crises might be re-
sponsible for the market warm-up observed, in January, 1995 and August, 1997, respectively. We
notice that the periods when higher volatility was observed during the Real period have been smaller
than in the preceding period. Some political actions of the Minas Gerais State Governor, in January,
1999, could be associated with the decrease of the expected returns and volatilities of both indexes,
from this period on.

In July, 1999, Russia’s crisis could have produced the change in the IBOVMESB series. However,
we do not observe changes in the IBOVESPA series within that period. This diLerent behavior could
be explained by the policy adopted by the Brazilian government during Asias’s crisis, in August,
1997, and because IBOVESPA is the main indicator of the Brazilian economy, incorporating the
bene7ts of the government policies more immediately.

Fig. 13 shows the posterior distribution of the number of change points that occurs in each index.
We notice that the posterior distributions of the number of change points for both indexes concentrate
most of their mass on small values as expected. However, the posterior distribution of the number
of change points for IBOVESPA series are more concentrated and typically concentrate their mass
on smaller values than the IBOVMESB series, which means that the former series comes from a
more stable market.

5. Final remarks and future directions

The classical PPM was described and its importance for change-point identi7cation problems in
time series analysis was stressed. The PPM was tailored to the analysis of multiple change points
in the means and variances of normal data, assuming a prior speci7cations for these parameters
and for the parameter p that is the probability of having a change in a period of time. A new
scheme based on Gibbs sampling was proposed to implement the PPM that avoided its inherent
computational hardness. The algorithm was coded in C++ and it was made available upon request.
Two important Brazilian indexes were analyzed and the method seemed to explain satisfactorily their
behavior, if a change-point analysis is required.

It was concluded that the IBOVESPA and IBOVMESB series have a very similar behavior and
could probably suLer the in=uences of the same non-local events. It was noticed that both in-
dexes have presented clusters in the expected returns and volatilities, as well as a small num-
ber of change points. These same conclusions were also driven for the Chilean stock market by
Loschi et al. [11], disclosing the similarities that exist in the behavior of Brazilian and Chilean
markets. São Paulo and Minas Gerais states are two of the most important economies in Brazil,
thus having a high political in=uence. Hence, as Minas Gerais is the strongest economy involved
in the IBOVMESB, the similarities observed in the behavior of IBOVESPA and IBOVMESB are
justi7ed.

Some open questions remains. Would it be possible to 7nd even simpler implementations for the
PPM? How sensitive to the prior statement are the results? How big would the treatable series be?
How well does the methodology 7ts in other subject areas? These and other similar questions are
interesting and relevant topics for future research in this area.
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